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SUMMARY 

A study of viscous and inviscid hypersonic flows using generalized upwind methods is presented. A new 
family of hybrid flux-splitting methods is examined for hypersonic flows. The hybrid method is constructed 
by the superposition of the flux-vector-splitting (FVS) method and second-order artificial dissipation in the 
regions of strong shock waves. The conservative variables on the cell faces are calculated by an upwind 
extrapolation scheme to third-order accuracy. A second-order-accurate scheme is used for the discretization 
of the viscous terms. The solution of the system of equations is achieved by an implicit unfactored method. In 
order to reduce the computational time, a local adaptive mesh solution (LAMS) method is proposed. The 
LAMS method combines the mesh-sequencing technique and local solution of the equations. The local 
solution of either the Euler or the Navier-Stokes equations is applied for the region of the flow field where 
numerical disturbances die out slowly. Validation of the Euler and Navier-Stokes codes is obtained for 
hypersonic flows around blunt bodies. Real gas effects are introduced via a generalized equation of state. 
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1. INTRODUCTION 

The development of computational methods for hypersonic flows has attracted increasing 
interest in recent last years. CFD is expected to play an important role in hypersonic vehicle 
design because of the difficulties in producing data from experimental facilities. The focus of CFD 
methods is on the accurate simulation of flows with strong shock waves, capturing complex flow 
phenomena and variations in the variables for hypersonic flows. 

The study of hypersonic shock waves around a blunt body constitutes one of the major 
problems in hypersonic aerodynamics, because the blunt shape is used to reduce heat transfer, 
especially in the nose of the body. The shock wave is stronger in front of the body, while large 
variations in the flow variables occur across it. 

Numerical methods must capture these variations in the thin shock and entropy layer and in 
the thick boundary layers, as well as the viscous interaction.132 During the last 15 years many 
upwind methods have been developed for transonic and supersonic flows. These methods have 
improved the accuracy of the numerical solution for both inviscid and viscous flows3 Despite 
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the reliability of these methods, problems have arisen in their application to flows with strong 
shock waves, such as blunt body hypersonic flows. 

Because of the high speed in hypersonic computations, numerical errors lead to negative values 
of the flow variables, such as negative pressures or spurious oscillations if the mesh lines are not 
aligned with the shock wave.9 Many researchers have presented recent modifications of previous 
numerical methods for applications in hypersonic  flow^.^,^.'^," 

Despite the above modifications, certain numerical problems still arise in hypersonic flow 
s im~la t ion .~  Such problems are the spurious non-physical oscillation of the numerical solution in 
the region of strong shocks, errors in the conservation of the total temperature as well as the 
development of accurate thermodynamic models in order to include real gas effects in the 
numerical simulation. In the present work a new family of hybrid flux-splitting methods is 
examined for viscous and inviscid hypersonic flows. The hybrid method constructs the fluxes as 
a superposition of the splitting scheme and a second-order artificial dissipation model. The 
conservative variables on the cell faces can be calculated either by a five-point upwind schemeI2 
or by the well-known MUSCL ~ c h e m e . ' ~  Thus hybrid FVS methods are created up to fourth- 
order accuracy for the inviscid flux discretization. A second-order-accurate model is used for the 
discretization of the viscous fluxes.14 

One of the major problems during the numerical solution of hypersonic flows is the slow rates 
of convergence of the numerical algorithms. In hypersonic flows small CFL numbers are required 
to  capture slowly moving shock waves. It is known from experience in transonic and supersonic 
flows that unfactored solution methods including Gauss-Seidel relaxation allow the use of high 
CFL numbers. Numerical experiments have shown that high CFL numbers cannot be used in 
hypersonic flows even in the case where unfactored Newton-type methods1"16 are used for the 
inversion of the system of equations. In order to reduce the computational time, a local solution 
method (LSM) is presented. This method was developed in the past to accelerate the convergence 
of the Euler and Navier -Stokes codes in transonic and supersonic flows, leading to a significant 
reduction in the computational time.17 Extension of the LSM to hypersonic flows is presented. 

Validation of the methods is obtained for hypersonic flows around blunt bodies for perfect and 
real gas equilibrium air. 

2. GOVERNING EQUATIONS 

The governing equations are the time-dependent Navier-Stokes equations for a compressible 
fluid. The equations can be written in conservation dimensionless form and for a generalized 
co-ordinate system as 

where Re is the Reynolds number, U = (p ,  pu, pw, e)T is the conservative solution unknown vector 
and p, u, w and e are the density, velocity in the x-direction, velocity in the z-direction and total 
energy per unit volume respectively. Einv and G,,, are the inviscid flux vectors and Evis and Gvis are 
the viscous flux vectors. J = xtzc- zgxc is the Jacobian of the transformation from Cartesian 
co-ordinates (x, z )  to generalized co-ordinates ( 5 ,  [). 

The dimensionless viscosity ,u can be defined for a real gas as a function of the density p and the 
specific internal energy i, i.e. 

,u=,u(p, ik (2) 
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while the Prandtl number Pr can be defined as a function of the temperature and the density, i.e. 

Pr = Pr(  T, p). 

P = P( P, i). 

(3) 

(4) 

The formulation of the governing equations is completed by an equation of state: 

The implementation of the real gas properties into the numerical algorithm will be presented in 
a later section of the paper. 

3. GENERALIZED FVS METHOD FOR HYPERSONIC FLOWS 

Almost all upwind methods make use of operator splitting for the discretization of the inviscid 
fluxes. The use of highly accurate multidimensional upwind methods" is difficult for code 
development as well as very expensive in computational time. Because of the use of operator 
splitting, the solvers find it difficult to recognize strong variations which are not aligned with the 
mesh lines. This problem has also been observed by other authorsg3" in flows with strong shock 
waves. In such flows many of the parameters take very small values, and if the solution is not 
accurate, negative square root arguments will blow up the solution. This latter effect is much 
stronger in the transient phase when the shock wave is moved. 

This problem can be ovecome by increasing the artificial dissipation of the algorithm. In the 
present study the discretization of the inviscid fluxes is carried out by a modified Steger-Warming 
FVS method." The FVS method decomposes the inviscid flux into two parts, positive and 
negative, in accordance with the signs of the eigenvalues: 

(Emv)L+ 1 , Z  =( I-A + T- + 1 , 2  u ~ +  1/2  + f T-  )i+ 112 C.:+ 1/2 3 (5 )  
where T and T-' are the left and right eigenvector matrices respectively and A +  and A- are the 
positive and negative eigenvaliue matrices respectively. The split fluxes are defined on the cell 
faces of the computational volume instead of at the centre of the volume, because the first 
formulation improves the results in the boundary 

The eigenvalues of the positive and negative eigenvalue matrices are split in accordance with 
Eberle et a/.:" 

where - - 
10 =us, + W&, 1 ,=Ao+S,  A2=Ao-S, 

with S representing the speed of sound. Splitting of the zeroth eigenvalue in accordance with 
equation (6a) reduces the errors related to the conservation of the total temperature. The split 
convective fluxes can be defined as 

FVS + 
(Einv )i+ 112 =PI V t  I 

:(I .;  +A;) 

(7) 
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As mentioned above, in order to overcome the numerical problems in hypersonic flow 
computations, artificial dissipation is added in the FVS method. 

Because the zeroth eigenvalue is close to zero and the first and second eigenvalues do not have 
large variations in the stagnation regions, they are good indicators for the second-order damping 
terms. Thus the following model is constructed: 

The terms Lo, L1, and L2 are defined as 

j 

The parameter c is a constant with typical values between 005 and 0.18, while 8 is a very small, 
positive constant number ( ~ = 1 0 - ~ ) .  The above model adds only a very small amount of 
second-order artificial dissipation in the shock region. 

The generalized flux for hypersonic flows can be defined as 

The above Rux can also be used in transonic and supersonic flows by setting the constant c in 
expression (8a) equal to zero. 

4. HIGH-ORDER EXTRAPOLATION SCHEMES 

The conservative variables on the cell faces can be calculated either by a hybrid five-point upwind 
extrapolation scheme" or by the well-known MUSCL scherne.l3 The hybrid five-point upwind 
scheme is constructed by superposition of the first-, second-, third- and fourth-order extrapola- 
tion schemes: 

(1 1) U ~ + ' , , = A u ' ~ ' $ ( l - - A )  {BU2,* +(1-B) [CU3'* $(l-C)]U4'f}. 

The superscripts 1,2,3 and 4 denote the various orders of extrapolation. For instance, the 
third- and fourth-order extrapolations are defined as 

(u?+ l / z ) F = i  (5u i -u i - l+2u i+  I), (ui3+1/2)+ =& (5ui+ 1 - ui+2 +2ui), 

and 

(u?+ 112)- =(u?+ 1/2)+  = i (7ui + 7ui+ 1 - ui - 1 - ui+ 2 )  

respectively. 

pressure:' 
The terms A and B are limiter functions and are defined by the second-order derivatives of the 

A = min (1, d I p;<, i+ 1 - Pir ,  I), 
B = min (1, b I P%, i +  - P &  I), 

(12a) 

(12b) 
The values of the constants are d = 4.5, b = 2-5 and C = 2.25. 
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The second approach to the calculation of the conservative variables on the cell faces is the 
MUSCL scheme.13 

Numerical experiments" have shown that the hybrid upwind and MUSCL schemes present 
similar behaviour for inviscid flows. For viscous flows the MUSCL scheme in combination with 
the FVS method leads to inaccuracies in the boundary layers,21*22 while the third-order hybrid 
scheme captures the skin friction and velocity distribution in the boundary layers with satisfac- 
tory accuracy. In accordance with the above, the hybrid upwind scheme is used for viscous flows. 

5. UNFACTORED IMPLICIT RELAXATION SOLUTION 

An unfactored implicit method is used in combination with the generalized FVS method for the 
solution of the system of equations. The implicit method is first-order-accurate in time. The 
unfactored equations are solved via a Newton-type method by constructing a sequence of 
approximations q' such that 

lim q V + U n + l ,  

where v is the subiteration state. A Newton form is obtained by linearization of equation (1 )  
around the known subiteration state v as follows: 

V l 1  

Aq'" U"-q" 
J - + ( A  rnv Aq'+ + (Cynv Aq'+')i + (C:is, ,h Aq" ' ) - J ~- - RHS, (13a) At '- At 

and q' and qvtl  are the solution vectors at the subiteration states v and v+l respectively. 
Gauss-Seidel relaxation using four subiteration states is applied on the LHS of equation (13a) 
while the RHS is held constant.16 On the LHS the thin layer viscous Jacoljian Cvis,th is used for 
steady state calculations, saving computational time. The inviscid fluxes on the LHS of equation 
(1 3a) are split as follows: 

(A:nv Aqv+ )< = ( A  Aqv+ ' )i + 112 - ( A  I, Aqv + ) i -  112 9 

(A~nvAqv+1) i+l /2=(TA+7'T-1) i++1/2(Aq )i+1/2+(7'A- T-')Y+1/2 (&I )i+1/2 3 
V + l  + V + l  - 

with 
(Aq"+ I )  ;+ l j 2  = bAq y' + 4 (1 - b) (3Aq;' - Aq L?:), 
(Aq"+');+ t /2=(Aqvf1)i+ 1 * 

The parameter b is a function defined from the values of the RHS in order to decrease the 
accuracy of the extrapolation in the regions of discontinuities. In order to retain the stability of 
the implicit solution, the split eigenvalue matrices are defined as 

A +  =max(F, A), A - = min (- F, A), 
where 

F=Bhmax[IAII, lL2/]. 

The sensor B is defined by equation (12b) if the hybrid upwind scheme is used for the 
discretization of the inviscid fluxes. If the FVS method is used with the MUSCL upwind scheme, 
the sensor B is better defined by the squares of the Mach number on the left and right states of the 
cell face. The constant h is 0.5. 



764 D. DRIKAKIS AND S. TSANGARIS 

6. LOCAL SOLUTION METHOD 

As mentioned in Section 1, slow rates of convergence have been observed in numerical simula- 
tions of hypersonic flow fields. In order to reduce the computational time, a combination of the 
mesh-sequencing technique with a local solution method is applied. In the mesh-sequencing 
t e c h n i q ~ e ' ~ ~ * ~  an initial guess on the fine mesh is obtained by first iterating the solution of the 
equations on a sequence of coarser grids and then interpolating the solution to the next finer grid. 
In the present calculations two levels (coarse and fine meshes) have been used. The coarse mesh is 
constructed by eliminating every second line of the fine mesh in each direction. Because in the 
mesh-sequencing procedure the centres of the volumes of the fine mesh are not a subset of the 
volumes of the coarse mesh, bilinear interpolation is used for the calculation of the conservative 
variables from the corresponding variables of the coarse mesh. 

In accordance with the non-uniform propagation of the numerical  disturbance^,^^ the solution 
of the equations can be obtained only in the region of the flow field where the disturbances are 
large (exceed a prescribed value), while the rest of the flow field is considered to be converged. 
Drikakis and Tsangaris' have observed that the numerical disturbances decrease rapidly away 
from the solid boundary and the shock wave regions in transonic and supersonic flows. 

In the case of hypersonic flow around a blunt body the shock wave is formed near the solid 
boundary and thus interaction between the solid boundary and the shock wave in inviscid flows 
as well as between the shock wave and the thick boundary layer in viscous flows occurs. The 
behaviour of the numerical disturbances has been studied separately for the inviscid and viscous 
flow cases. The basic conclusions from this study are as follows. In inviscid hypersonic flows the 
numerical disturbances are diminished faster from the solid boundary region (except for the 
stagnation region) than from the region of the slowly moving shock wave. During the numerical 
solution the shock wave is moved until its final steady state position is achieved. After the steady 
state position of the shock, numerical disturbances continue to exist in the region of large 
variations until the achievement of the final steady state values of the variables across the shock 
wave. In accordance with the above, local solutions can be achieved in the region around the 
shock wave and in front of the body nose, during the numerical iterations. 

In viscous hypersonic flows large values of the numerical disturbances are present (after 
a number of iterations) in the boundary layer and around the shock wave. Thus two local solution 
zones are constructed. The first overlaps the bow shock wave while the second overlaps a part of 
the boundary layer around the body. The region between the two zones is frozen until the steady 
state solution is achieved in the whole flow field. The local solution regions are generated by an 
adaptation procedure.' 

7. INCORPORATION OF REAL GAS EFFECTS 

Extensions of FVS methods to deal with real gas effects have been presented by several 
authors.25 2 8  It is known that if we consider the pressure as a function of the density and the 
specific internal energy, the Steger-Warming FVS method does not satisfy the homogeneous 
property of the Euler equations. Thus the incorporation of the real gas model is achieved by 
a parametrization, introducing an equivalent ratio of specific heats, 7, defined as 

The generalized equation of state and the equations for the transport properties (viscosity, 
thermal conductivity, Prandtl number) have been developed by Srinivasan and ~ o - w o r k e r s . ~ ~ , ~ ~  
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The true speed of sound can be expressed via the introduction of pressure derivatives as 

765 

where p p  and pi are the pressure derivatives with respect to the density and the specific internal 
energy respectively. Instead of using the latter equation, the speed of sound can be expressed in 
terms of the equivalent ratio qJ as 

S 2  = “j.( p ,  i) - P 
P 

Using the above equation, computational time is saved in comparison with the use of equation 
(1 4), where the pressure derivatives must be calculated appr~x ima te ly .~ ’ ,~~  

In order to save computational time, the ratio qj. and the transport properties of the air are 
updated every fifth iteration. This process does not affect the stability of the numerical solution. 

Although the split fluxes on the RHS require no significant modifications for the real gas 
model, a different approach on the LHS of equation (13a) can be used by the derivation of the 
Jacobian matrices and eigenvectors for a general equation of state.28 This approach makes the 
Jacobians and eigenvectors as functions of the pressure derivatives. Numerical experiments for 
the present hypersonic flows showed that the above procedure increases the CPU time but does 
not have any influence on the numerical results. Thus the equivalent ratio y” is also used in the 
implicit part of the method (equation (1 3a)). 

8. RESULTS 

Validation of the Euler and Navier-Stokes codes is obtained for hypersonic flows around blunt 
bodies, because these geometries are particularly important shapes in hypersonic aerodynamics. 

Initially, the efficiency of the local solution method (LSM) has been tested for a hypersonic 
inviscid flow with M = 6.3 around a cylindcr. A physical picture of the flow field is shown in 
Figure l(a). The mesh sequencing, the LSM and the influence of the relaxation factor (in the 
Gauss-Seidel relaxation sweeps) in the convergence have been studied. In transonic and super- 
sonic flows ( M , < 2 )  the relaxation factor (RL) has the value 0.2. For the present flow the 
mesh-sequencing procedure has been tested using RL =0.2 and 0.6. From Figure l(b) it is obvious 
that the value RL=0-6  improves the convergence. In the same figure it is also shown that the 
mesh-sequencing procedure reduces the computational work in comparison with the fine mesh. 
The mesh-sequencing method has also been used in combination with the LSM. After conver- 
gence of the solution on the coarse mesh (residual z the iterations are continued on the fine 
mesh. The local solution is applied when the residual reaches a value of about The 
convergence of the equations on the partial meshes is faster than the convergence on the fine mesh 
(using mesh sequences). Thus after 450 iterations convergence has been achieved by the LSM, 
while using only the mesh-sequencing procedure 720 iterations are required. Hence a combina- 
tion of the mesh-sequencing method and the LSM is used for the calculation of the present 
hypersonic flow fields. 

An inviscid case is considered for validation of the perfect and real gas versions of the code, 
namely a hypersonic flow with a freestream Mach number of 15 over a blunt body. The above 
flow field was also calculated by Grossman and Walters3’ using Roe’s flux-difference-splitting 
method. In Figure 2 the 81 x41 computational mesh is shown. Reference conditions were 
chosen to correspond to atmospheric conditions at an altitude of 45 km: p =  170 Nm-2,  
p=0.002 kgrnT3, T=295 K. 
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WORK UNITS 
(b) 

Figure 1. Hypersonic flow with M = 6.3 around a cylinder: (a) isodensity lines, (b) convergence histories 
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Figure 2. Computational mesh (81 x 41) for inviscid hy- 
personic flow with M=15 

Figure 3. Isopressure lines for perfect and equilibrium 
air (inviscid hypersonic flow, M = 1 5 )  

- Pment relulh 
0 ~ 0 0 0  Grossmon ana Woltao 

Analytic solution 

a : I ' I- -, - ,-~=+, - 
i 

- 5 . 0 0  x;."r -200 

Figure 4. Temperature distribution along symmetry line (inviscid hypersonic flow, M =  15) 
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Figure 5. Distributions along body surface: (a) pressure, (b) temperature, (c) density (inviscid hypersonic flow, M =  15) 
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Figure 6. Computational mesh (60 x 60) for viscous hy- 
personic flow ( M =  10, Re= 1.2 x lo4) around a hyper- 

bola 

Figure 7. Iso-Mach lines around hyperbola ( M =  10, 
Re= 1.2 x lo4) 

For the real gas calculations the thermodynamic subroutines of Srinivasan and co- 
worke r~ '~ .~ '  have been used. The isopressure lines for the perfect and real gas calculations are 
shown in Figure 3.  The resolution of the shock waves is very good. The pressure contours show 
large differences in the stand-off distance between perfect and equilibrium air. In Figure 4 the 
temperature distribution along the symmetry line is plotted. The present results are compared 
with the corresponding results of Grossman and Wa1te1-s.~' The jump in the flow values across 
the shock wave is also compared with the analytic solution. The calculated stand-off distance 
d = 0.401 R is in good agreement with the corresponding experimental value d=0.3941 R obtained 
by Billig.32 In Figure 5 the pressure, temperature and density distributions along the body surface 
are shown. The influence of the real gas is significant in the temperature and density distributions. 
All the above results are in good agreement with the corresponding results from the literature. 

Validation of the Navier-Stokes code for hypersonic flows has been obtained for a flow with 
a freestream Mach number M = 10 and Re = 1.2 x lo4 around a hyperbola with the equation 

2 

(&+l)i(&) = I .  
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1 1 1 1 1 ~ ~ ~ ~ 1 ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ 1 ’  

Figure 8. Isotemperature lines for perfect and 
equilibrium air (M = 10, Re = 1.2 X lo4) 

Figure 9. Velocity vectors in stagnation region of hyperbola 
for equilibrium air ( M  = 10, Re= 1.2 x lo4) 

CL 
0 

Figure 10. Pressure Re = 1.2 x lo4) 
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Figure 1 1 .  

(1)  Temperature perfect gas (present results) 

(2) Temprerature real gas (present results) 
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5000 3 

Figure 12. Temperature distributions along hyperbola wall ( M =  10, Re= 1.2 x lo4) 
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Present results 
o a m l l o  Reference 34 
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Figure 13. Skin friction distribution (cf) along hyperbola wall for perfect air ( M =  10, Re= 1.2 x lo4) 

2.50 
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o'so 0.00 0.0 i 0.2 0.4 0.6 0.8 1 .o 

x / I  
Figure 14. Comparison of cf between perfect and equilibrium air 

This hypersonic flow has also been studied by other a ~ t h o r s . ~ ~ . ~ ~  Reference conditions were 
chosen to correspond to atmospheric conditions at an altitude of 52 km: p = 48.67 N mW2, 
p=7-7  x kgm-3, T=225 K. The wall of the hyperbola is considered adiabatic. The com- 
putational mesh is 60 x 60 (Figure 6). Iso-Mach lines are shown in Figure 7, while comparison of 
the flow field for perfect and equilibrium air is shown in Figure 8 as a plot of isotemperature lines. 
The resolution of the shocks is satisfactory. The code preserves the symmetry of the solution 
(Figure 7). It is noted that the calculations have been obtained in the whole flow field although the 
flow is symmetrical. The abrupt change in the flow direction in the region of strong variations is 
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Figure 15. Variation in ratio .; for viscous hypersonic flow 
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f low 

7 \ 
r t 8 8 ,  8 8 8 1 7  1 ,  I I c r I , ,  I I 

0 2000 4000 6000 8000 10000 
ITERATIONS 

Convergence history for real gas viscous hypersonic flow (M = 10, Re= 1.2 x lo4) 

shown in Figure 9 for the real gas case. Comparisons between the present results and those of 
References 33 and 34 for the pressure coefficient, temperature and skin friction are shown in 
Figures 10-14. 

The real gas effects are not significant in the pressure distribution (Figure 11) but are in the 
temperature field (Figure 12). The results for the pressure and skin friction distributions (Figures 
10 and 13) are in good agreement with the corresponding results from the In 
Figure 15 the variation in the equivalent ratio 7 over the hyperbola is plotted. The convergence 
history (real gas calculation) is shown in Figure 16. The CPU time is 0.003 s per iteration per grid 
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point (on a SUN 1 +). The number of iterations for the perfect and real gas calculations is the 
same, but the thermodynamic subroutines for equilibrium air increase the CPU time by about 
20% for the real gas calculations. 

9. CONCLUSIONS 

The accuracy and efficiency of upwind hybrid FVS methods have been discussed and results for 
inviscid and viscous hypersonic flows have been presented. The conclusions are as follows. 

1. The efficiency of the unfactored solution can be improved by using mesh sequencing and the 

2. The hybrid FVS method can capture strong shock waves with satisfactory accuracy. 
3. The results with the Euler and Navier-Stokes codes are in satisfactory agreement with the 

local solution method. 

corresponding results from the literature. 

1. 
2. 
3. 

4. 

5. 

6. 
7. 

8. 

9. 
10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

REFERENCES 

W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory, Academic, New York, 1959. 
J. D. Anderson Jr. Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, New York, 1982. 
J. L. Steger and R. F. Warming, ‘Flux vector splitting of the inviscid gas dynamic equations with applications to finite 
difference methods’, J .  Cornput. Phys., 40, 263-293 (1981). 
P. L. Roe. ‘Approximate Riemdnn solvers, parameters vectors and difference schemes’, J .  Comput. Phys., 43,357-372 
(1981). 
B. van Leer, ‘Towards the ultimate conservative difference scheme. 11. Monotonicity and conservation combined in 
a second order scheme’, J .  Comput. Phys., 14, 361-370 (1974). 
H. C. Yee, ‘Upwind and symmetric shock capturing schemes’, NASA-TM 89464, 1987. 
S. R. Chakravarthy, ‘High resolution upwind formulations for the Navier-Stokes equations’, VKI Lecture Ser., 
Comput. Fluid Dyn.? 1988-05, 1988. 
R. W. MacCormack and G. V. Candler, ‘The solution of the Navier-Stokes equations using Gauss-Seidel relaxation’, 
Cornput. Fluids, 17, 135-150 (1989). 
W. Kordulla, ’Computational techniques for hypersonic flows’, AGARD 761, 1988. 
A. Eberle, M. A. Schmatz and N. C. Bissinger, ‘Generalized flux vectors for hypersonic shock capturing’, AIAA Paper 
90-0390, 28th Aerospace Sciences Meeting, Reno, NV, 1990. 
B. Muller, ‘Simple improvements of an upwind scheme for hypersonic flows’, AIAA Paper 89-1977, 9th CFD Con$, 
Buffalo, NY, 1989. 
A. Eberle, ‘Characteristic flux averaging approach to the solution of the Euler’s equations’, VKI Lecture Ser., Cornput. 
Fluid Dyn., 1987-04, 1987. 
W. K. Anderson, J. L. Thomas and B. van Leer, ‘Comparisons of finite volume flux vector splittings for the Euler 
equations’, AIAA J., 24, 1453-1460 (1986). 
S. R. Chakravarthy, K. Y. Szema, U. C. Goldberg and J. J. Gorski, ‘Application of a new class of high accuracy TVD 
schemes to the Navier-Stokes equations’, AIAA Paper 85-0165, 1985. 
S. R. Chakravarthy, ‘Relaxation methods for unfactored implicit upwind schemes’, AIAA Paper 84-0165, 22nd 
Aerospace Sciences Meeting, Reno, NV, 1984. 
M. A. Schmatz, A. Brenneis and A. Eberle, ’Verification of an implicit relaxation method for steady and unsteady 
viscous and inviscid flow problems’, AGARD CP-437, 1988, pp. 15-1-15-33. 
D. Drikakis and S. Tsangaris, ‘Local solution acceleration method for the Euler and Navier-Stokes equations’, AIAA 

P. Colella, ‘Multidimensional upwind methods for hyperbolic conservation laws’, J .  Comput. Phys., 87, 171-200 
(1990). 
D. Drikakis and S. Tsangaris, ‘Laminar and turbulent viscous compressible flows using improved flux vector 
splittings’, in J. B. Vos, A. Rizzi and I. L. Ryhming (eds), Proc. 9th G A M M  Cortf. on Numerical Me thoh  in Fluid 
Mechanics, Notes on Numerical Fluid Mechanics, Vol. 35, Vieweg, Braunschweig, 1992, pp. 407-416. 
D. Drikakis, ‘Development of upwind numerical methods for high speed aerodynamics’, Ph.D. Dissertation, National 
Technical University of Athens, 1991. 
D. Hanel, R. Schwane and G. Seider. ‘On the accuracy of upwind schemes for the solution of the Navier-Stokes 
Equations’, AIAA Paper 87-1105, 8th CFD Con$, Honolulu, HW, 1987. 
B. van Leer, J. L. Thomas, P. L. Roe and R. W. Newsome, ‘A comparison of numerical flux formulas for the Euler and 
Navier-Stokes equations’, AIAA Paper 87-1104,8th CFD Con$, Honolulu, HW, 1987. 
T. H. Pulliam, ’Efficient solution methods for the Navier-Stokes equations’, VKI Lecture Ser., 1986. 

J., 30, 340-348 (1992). 



CFD METHODS IN REAL GAS HYPERSONICS 775 

24. A. G. Panaras, ‘The spatially non-uniform convergence of the numerical solution of flows’, J .  Comput. Phys., 82, 

25. B. Grossman and R. N. Walters, ‘Flux-split algorithms for the multi-dimensional Euler equations with real gases’, 

26. M. S. Liou, B. van Leer and J. S. Shuen, ‘Splitting of inviscid fluxes for real gases’, J .  Comput. Phys., 87, 1-24 (1990). 
27. P. Glaister, ‘An approximate linearised Riemann solver for the three dimensional Euler equations’, J .  Comput. Phys., 

28. D. Drikakis and S. Tsangaris, ‘An implicit characteristic flux-averaging method for the Euler equations for real gases’, 

29. S. Srinivasan and J. C. Tannehill, ‘Simplified curve fits for the transport properties of equilibrium air’, NASA 

30. S. Srinivasan, J.  C. Tannehill and K. J. Weilmuenster, ‘Simplified curve fits for the thermodynamic properties of the 

31. B. Grossman and R. N. Walters, ‘Analysis of flux-split algorithms for the Euler’s equations with real gases’, AIAA J., 

32. F. S. Billig, ‘Shock-wave shapes around spherical and cylindrical nosed bodies’, 1. Spacecr. Rockets, 4,822-823 (1967). 
33. M. A. Schmatz, ‘Hypersonic three-dimensional Navier-Stokes calculations for equilibrium gas’, A f A A  Paper 89-2183, 

34. C. H .  Mundt, M. Pfintzer and M. A. Schmatz, ‘Calculation of viscous hypersonic flows using a coupled Euler/2nd 

429-453 (1989). 

Comput. Fluids, 17, 99-112 (1989).’ 

77, 361-383 (1988). 

Int. j .  numer. methodsfluids, 12, 711-726 (1991). 

CR-178411, 1987. 

equilibrium air’, NASA RP-1181, 1987. 

27, 524-532 (1989). 

7rh Applied Aerodynamics Conj:, Seattle, WA, 1989. 

order boundary layer method‘, MBB-FE122-S-PUB-387, 1989. 


